RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIFTH SEMESTER EXAMINATION, DECEMBER 2016

THIRD YEAR [BATCH 2014-17]

MATHEMATICS [Honours]

: 14/12/2016 Time : 11 am – 3 pm

Date

Paper : V

Full Marks: 100

[5×10]

[5+5]

[5+5]

[Use a separate Answer Book for <u>each Group</u>]

Group – A

(Answer any five questions)

- 1. a) Define a normal subgroup of a group. Give example of a subgroup which is not normal.
 - b) Let *H* be a proper subgroup of a group *G* and $a \in G$, $a \notin H$. Suppose that for all $b \in G$, either $b \in H$ or Ha = Hb. Show that H is a normal subgroup of G.
 - Prove that there are only two groups (upto isomorphism) of order 6. [3+2+5]c)
- Let $G = \{a \in \mathbb{R} : -1 < a < 1\}$, show that the group (G, *) and the group $(\mathbb{R}, +)$ are isomorphic 2. a) where $a * b = \frac{a+b}{1+ab}$ for all $a, b \in G$.
 - b) Show that additive group (Z, +) cannot be expressed as internal direct product of two of its subgroups.
 - c) Determine the class equation of a non-abelian group of order six. [5+2+3]
- Let G be a cyclic group of order mn where m, n are positive intergers with gcd(m,n) = 1. 3. a) Show that $G \cong \mathbb{Z}_m \times \mathbb{Z}_n$.
 - b) Prove that any group of order p^2 is abelian where p is prime.
 - c) How many elements of order 7 are there in a group of order 28? Justify your answer. [5+3+2]
- a) State and prove Cauchy's theorem on finite group. 4.
 - b) Prove that a group of order 90 is not simple.
- a) Let D and D' be two isomorphic integral domains through an isomorphism f. Show that f can 5. be uniquely extended to an isomorphism of F onto F', where F and F' are quotient fields of D and D' respectively.
 - b) Let R be a commutative ring with identity $1 \neq 0$. Then prove that a proper ideal P of R is prime if and only if R_{P} is an integral domain.
- a) Let *R* be a P.I.D then prove that every $a \in R$ which is not invertible can be expressed as a 6. product of irreducible elements.
 - b) In the ring $R = \{a + b\sqrt{-5} / a, b \in Z\}$, show that $1 + 2\sqrt{-5}$ is irreducible but not prime. [5+5]
- 7. a) Define a polynomial ring. Prove that if R is an integral domain, then R[x] is also an integral domain.
 - b) Show that any finite integral domain is a field.
 - c) Let R be a ring such that $a^2 = a$, $\forall a \in R$, prove that the characteristic of R is two. [5+3+2]
- Let *R* be a commutative ring with identity and $a, b \in R$. Show that $I = \{ra + tb : r, t \in R\}$ is an 8. a) ideal of R.

- b) Suppose *F* is a field and there is a ring homomorphism from \mathbb{Z} onto *F*. Show that $F \simeq \mathbb{Z}_p$ for some prime number *p*.
- c) Let *K* be a field and $p(x) \in K[x]$. Let *P* be the principal ideal generated by p(x). Prove that $\frac{K[x]}{P}$ is an integral domain if and only if $\frac{K[x]}{P}$ is a field. [3+2+5]

<u>Group – B</u>

<u>Unit - I</u> (Answer <u>any six</u> questions) [6×5]

9. a) Consider the function

$$f(x, y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}, \quad xy \neq 0$$
$$= 0, \qquad xy = 0$$

Prove that the repeated limits do not exist but the double limit exists.

b) Check the existence of the double limit

$$\lim_{(x,y)\to(0,0)} \left(\frac{\sin x + \sin 2y}{\tan 2x + \tan y} \right)$$
[3+2]

- 10. Prove that a sufficient condition that a function *f* be continuous at (*a*, *b*) is that one of the partial derivatives exist and is bounded in a neighbourhood of (*a*, *b*) and the other exists at (*a*, *b*). [5]
- 11. Show that for the following function, the sufficient conditions for the differentiability at a point do not hold but the function is differentiable at that point:

$$f(x, y) = \begin{cases} x^2 \sin \frac{1}{x} + y^2 \sin \frac{1}{y}, & xy \neq 0\\ x^2 \sin \frac{1}{x}, & x \neq 0\\ y^2 \sin \frac{1}{y}, & y \neq 0\\ 0, & x = 0 = y \end{cases}$$

- 12. State and prove Schwarz's Theorem on the commutativity of order of partial derivatives. [5]
- 13. Transform the equation $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = z^2$, taking u = x, $v = \frac{1}{y} \frac{1}{x}$ for the new independent variables and $w = \frac{1}{z} \frac{1}{x}$ for the new function. [5]
- 14. Given $f(x+y) = \frac{f(x) + f(y)}{1 f(x)f(y)}$ where *f* is differentiable function and f(0) = 0 and $f(x)f(y) \neq 1$, show that $f(t) = \tan \alpha t$, α is constant. [5]
- 15. a) Examine the applicability of implicit function theorem for f(x, y) = 0, where $f(x, y) = xy \sin x + \cos y$ in the neighbourhood of $(0, \frac{\pi}{2})$.
 - b) Show that

$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

is not differentiable at (0,0).

[3+2]

[5]

16. Let (x, y) approach (0,0) along y = -x. Using Taylor's theorem find limit of $\frac{\sin xy + xe^x - y}{x \cos y + \sin 2y}$. [5]

17. Show that the function

$$u = \phi(xy) + \sqrt{xy} \,\psi\left(\frac{y}{x}\right)$$

satisfies the equation $x^2 \frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0$ where *u* is twice differentiable function of *x* & *y*. [5]

<u>Unit - II</u> (Answer <u>any four</u> questions) [4×5]

18. a) State Second Mean-Value Theorem of Integral Calculus due to Bonnet. Using it show that there exists a point $\alpha \in [0, \pi]$ such that $\int_{0}^{\pi} e^{-x} \cos x \, dx = \sin \alpha$.

b) Show that
$$\frac{\pi^3}{24\sqrt{2}} < \int_0^{\pi/2} \frac{x^2}{\sin x + \cos x} dx < \frac{\pi^3}{24}$$
. [3+2]

19. The graph of a function $f:[a,b] \rightarrow R$ is rectifiable iff it is of bounded variation on [a, b]. Show that the graph of *f* given by

$$f(x) = x \sin\left(\frac{\pi}{x}\right), x \neq 0 \& f(0) = 0 \text{ is not rectifiable.}$$
[3+2]

20. a) If *f* be continuous on [*a*, *b*] and
$$F(x) = \int_{a}^{x} f(t)dt$$
, for $x \in [a,b]$, then show that $F'(x) = f(x)$ for all $x \in [a,b]$.

- b) Give an example of a function f which is Riemann integrable without having a primitive. [3+2]
- 21. a) Let $f:[a,b] \to \mathbb{R}$ be integrable on [a, b] and $f(x) \ge 0$ for all $x \in [a,b]$. If \exists a point *c* in]a,b[such that *f* is continuous at *c* and f(c) > 0 then prove that $\int_a^b f(x)dx > 0$.
 - b) If f is a continuous function on [a, b] such that $\int_{a}^{b} f^{2}(x)dx = 0$ then prove that f(x) = 0 for all $x \in [a,b]$. [3+2]
- 22. a) Let $f_n:[a,b] \to \mathbb{R}$ be Riemann integrable for each $n \in \mathbb{N}$. If the sequence $\{f_n\}$ converges uniformly to a function f on [a, b] then show that f is also Riemann integrable on [a, b].

b) Show that
$$-\frac{1}{2} < \int_{0}^{1} \frac{x^{3} \cos 5x}{2 + x^{2}} dx < \frac{1}{2}$$
. [3+2]

23. a) Let *f* be bounded and integrable on [*a*, *b*]. If there exists a function ϕ such that $\phi'(x) = f(x)$ for every $x \in [a,b]$, then prove that $\int_{a}^{b} f(x)dx = \phi(b) - \phi(a)$.

b) Evaluate
$$\lim_{x \to 0} \left(\frac{\int_{x^2}^{x^4} \sin \sqrt{t} dt}{x^3} \right).$$
 [3+2]

_____ × _____